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Nonlinear force-free models for the solar corona

I. Two active regions with very different structure
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ABSTRACT

Context. With the development of new instrumentation providing measurements of solar photospheric vector magnetic fields, we need to
develop our understanding of the effects of current density on coronal magnetic field configurations.
Aims. The object is to understand the diverse and complex nature of coronal magnetic fields in active regions using a nonlinear force-free
model.
Methods. From the observed photospheric magnetic field we derive the photospheric current density for two active regions: one is a decaying
active region with strong currents (AR8151), and the other is a newly emerged active region with weak currents (AR8210). We compare the
three-dimensional structure of the magnetic fields for both active region when they are assumed to be either potential or nonlinear force-free.
The latter is computed using a Grad-Rubin vector-potential-like numerical scheme. A quantitative comparison is performed in terms of the
geometry, the connectivity of field lines, the magnetic energy and the magnetic helicity content.
Results. For the old decaying active region the connectivity and geometry of the nonlinear force-free model include strong twist and strong
shear and are very different from the potential model. The twisted flux bundles store magnetic energy and magnetic helicity high in the corona
(about 50 Mm). The newly emerged active region has a complex topology and the departure from a potential field is small, but the excess
magnetic energy is stored in the low corona and is enough to trigger powerful flares.
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1. Introduction

The coronal magnetic field is complex in nature. Coronal obser-
vations have shown the diversity and complexity of active re-
gion magnetic fields evidenced by filaments (Priest et al. 1989;
Martin 1998), sigmoids (Rust & Kumar 1996; Canfield et al.
1999), and flare sites (e.g., Masuda et al. 1995). Many models
have been developed in order to determine the links between
the complexity of the magnetic field and flaring activity (see re-
view by Priest & Forbes 2002). In a coronal environment dom-
inated by the magnetic field (low plasma β), the main source
responsible for the complexity of the field is the existence of
electric currents along field lines. The currents originate either
from below the photospheric surface (flux emergence) or from
the horizontal velocity fields on the photosphere (convective
motions).

In addition to the study of active regions, the complexity of
the coronal magnetic field has been studied in the Quiet Sun
(Close et al. 2004) and for the global magnetic field (Mackay
& van Ballegooijen 2006; Riley et al. 2006; Maclean et al.
2006a,b).
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The electric current density in solar magnetic configur-
ations was first measured by Rayrole & Semel (1970) and
Krall et al. (1982) from spectro-polarimetric observations in
strong field regions. The authors showed how the vertical cur-
rent density can be derived from the measurement of the three
components of the magnetic field on the photosphere. The dis-
tribution of current density was found to be nonuniform and
with a large spread of values (even in sign) in one polar-
ity showing that active region magnetic fields can store mag-
netic energy and have a complex geometry (e.g., twisted flux
bundles, sheared arcades). Observations with high spatial resol-
ution (such as SOHO/EIT, TRACE, Yohkoh/SXT) have shown
that non-potential models of the magnetic fields fit the observa-
tions better than potential models which confirms the existence
of currents in active regions. The missing link is currently our
lack of understanding of the effects of nonuniformly distributed
photospheric currents on three-dimensional coronal configura-
tions.

Since the first attempts to reconstruct the coronal magnetic
field from observations (Schmidt 1964; Semel 1967), there has
been a growing interest in determining the coronal magnetic
field from photospheric measurements, especially with the de-
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velopment of spectropolarimeters and of numerical techniques.
The basic idea is to suppose the magnetic configuration of an
active region is in an equilibrium state between magnetic, pres-
sure and gravity forces. A special case of this magnetohydro-
static equilibrium is obtained for coronal conditions where the
pressure and the gravity can be neglected. We then have a so-
called force-free field equilibrium satisfying:

j ∧ B = 0, (1)

where B is the magnetic field and j is the current density (the
solenoidal equation should also be satisfied). Three different
types of solution of Eqn.(1) are commonly considered:

(i) a potential field for which the current density is zero every-
where in the coronal volume. The derived magnetic field is
relatively easy to compute nowadays and several methods
with different numerical schemes and different boundary
conditions have been developed. The potential field corres-
ponds to the minimum energy state that a magnetic config-
uration can reach with the same normal magnetic compon-
ent on the boundaries (see e.g. Schmidt 1964; Semel 1967;
Altschuler & Newkirk 1969);

(ii) a linear force-free field assumes that the current dens-
ity is proportional to the magnetic field with a constant
α (α being the same at each location in the coronal
volume). Several numerical methods have been developed
and interesting results have been derived. The magnetic
field obtained following this assumption is a minimum
energy state for a given total relative magnetic helicity
(see e.g. Nakagawa & Raadu 1972; Chiu & Hilton 1977;
Alissandrakis 1981; Gary 1989, for the most popular tech-
niques);

(iii) a nonlinear force-free (nlff ) field assumes that the current
density is proportional to the magnetic field with a con-
stant of proportionality (α) that varies with space. The nlff
field also satisfies the additional constraint that α is con-
stant along each field line. More challenging in terms of
computation, several nlff methods have been developed and
have been applied successfully to solar active regions (see
review in Amari et al. 1997; Jiao et al. 1997; Wiegelmann
2004; Schrijver et al. 2006; Régnier 2007).

It has been known since the early 80s that the vertical cur-
rent density derived from the observed photospheric magnetic
field can be positive and negative in one polarity leading to
the existence of return current in the corona. This is incom-
patible with both potential and linear force-free models. The
nature of the photosphere can be checked by means of integral
properties derived by Molodensky (1969) and Aly (1989). By
applying these properties, Metcalf et al. (1995) and Moon et al.
(2002) have shown that the photosphere is not force-free but be-
comes force-free at about 400 km above the photosphere (this
height is typically represented by half a pixel in our force-free
modeling). Wiegelmann et al. (2006) have developed a prepro-
cessing technique in order to minimize the magnetic forces and
torques on the photosphere. The nlff approximation is, however,
a good approximation for the coronal magnetic field, especially
compared to potential and linear force-free fields. The use of a

mathematically well-posed problem to solve the nlff field en-
sures that the reconstructed field is force-free even if the trans-
verse field slightly differs from the observed transverse field.
It is worth noticing that, when using photospheric magnetic
measurements, the magnetohydrostatic assumption should give
a better description of the field by allowing electric currents
perpendicular to the magnetic field lines (see e.g. Wiegelmann
& Neukirch (2006) for a first attempt to reconstruct magneto-
hydrostatic fields).

In this paper we compare potential field models of active
regions with nonlinear force-free models. We re-write Eqn. (1)
in terms of B as follows:

∇ ∧ B = αB, (2)

and by taking the divergence of the above equation we obtain
that

B · ∇α = 0 (3)

where α is defined as the force-free function (e.g. α = (∇ ∧
B)z/Bz). For a potential field or current-free field, α vanishes
everywhere in the considered volume. To compute the nlff mag-
netic field, we extrapolate the photospheric magnetic measure-
ments into the corona using the vector-potential Grad-Rubin-
like method (Grad & Rubin 1958) developed by Amari et al.
(1997; 1999) and used for solar applications by Bleybel et al.
(2002) and Régnier et al. (2002; 2004; 2006). The potential and
the nlff fields are computed with the same boundary conditions
for the normal component of B and its associated vector poten-
tial, A. For the potential field case, the lower boundary condi-
tion is given by the observed vertical component of B. For the
nlff field, we also need to provide the distribution of α derived
from the vertical and transverse components of B at the bound-
ary in one and only one polarity. The latter boundary condition
guarantees that we have a mathematically well-posed problem
(Sakurai 1981) to solve the nlff equations. For the side bound-
aries, we prescribe the normal component of B and α to vanish
leading to closed boundary conditions. These boundary condi-
tions are suitable for active-region magnetic fields where only
the bottom boundary condition is known. Those side boundary
conditions imply that the field-of-view should be large enough
and the magnetic field should decrease fast enough to be valid.
We notice that Amari et al. (2006) and Schrijver et al. (2006)
have implemented different side boundary conditions suitable
for analytical or semi-analytical solutions.

Even if the current density can be estimated on the pho-
tosphere, it is not clear how the change in the current density
distribution will affect a coronal magnetic configuration. And
it is the aim of our study to understand such modifications in
terms of the geometry of field lines, the storage of magnetic
energy and the amount of magnetic helicity. In Section 2, we
will describe the two active regions and the photospheric mag-
netic field data used to derive the 3D coronal field. In Section
3, we proceed to a visual inspection of the 3D magnetic con-
figurations as well as a statistical study of the geometrical and
magnetic properties of characteristic field lines. And we ana-
lyse the magnetic energy and the magnetic helicity budgets of
the active regions in Section 4.
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(a) (b)

Fig. 1. Photospheric distributions for AR 8151: (a) the vertical component of the magnetic field as observed by IVM; (b) the vertical current
density as computed from the transverse components. The IVM field-of-view is surrounded by SOHO/MDI magnetic field for Bz and zero
values for Jz (see text for details). The observations were recorded on February 11, 1998 at 17:36 UT in a composite field-of-view (SOHO/MDI
and IVM) of 330′′×300′′.

(a) (b)

Fig. 2. Photospheric distributions for AR 8210: (a) the vertical component of the magnetic field as observed by IVM; (b) the vertical current
density as computed from the transverse components. The IVM field-of-view is surrounded by SOHO/MDI magnetic field for Bz and zero
values for Jz (see text for details).

2. Active regions

2.1. Decaying active region

The active region 8151 (AR 8151) was observed on February
10–15, 1998 in the southern hemisphere. The magnetic con-
figuration of this active region has been extensively studied by
Régnier et al. (2002) and Régnier & Amari (2004). The authors
have found the existence of twisted flux tubes in AR 8151 with
different numbers of turns and different handedness.

The photospheric vector magnetic field is provided
by MSO/IVM (Mees Solar Observatory/Imaging Vector
Magnetograph, Mickey et al. 1996). The observations were per-
formed on February 11, 1998 at 17:36 UT with a field-of-view

of 280′′ square for a spatial resolution of 1′′. The magnetic field
distribution (see Fig. 1a) is rather simple: a leading negative
sunspot (Bz ∼ -1500 G) followed by a diffuse positive polarity
(Bz ∼ 450 G). Small scale magnetic features including para-
sitic polarities are responsible for the complexity of the mag-
netic field configuration. AR 8151 has reached a stage of its
evolution for which the magnetic flux is decaying. In Fig. 1b,
we plot the distribution of the vertical current density Jz on the
photosphere given by

Jz,phot =
1
µ0

(

∂By,phot

∂x
−
∂Bx,phot

∂y

)

. (4)
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Fig. 3. AR 8151 3D magnetic field configurations for the potential
field (left) and for the nlff field (right). A few particular flux bundles
are plotted corresponding to the same footpoints in the positive po-
larity (solid contours). We note that the current density modifies the
geometry of the field lines and their connectivity.

We estimate the noise level of the magnetic field components
following Leka & Skumanich (1999): about 50 G for the ver-
tical component and about 200 G for the transverse compon-
ents. The Jz distribution ranges from −30 to 30 mA·m−2. In the
following parts, we will use the values of α = Jz/Bz instead
of Jz because the α should be the same at both footpoints of a
loop. The α values range from −1 to 1 Mm−1.

2.2. Newly emerged active region

The active region 8210 (AR 8210) was observed on May 1,
1998 in the southern hemisphere by MSO/IVM. A detailed ana-
lysis of the time evolution of AR 8210 has been done in Régnier
& Canfield (2006). The authors have especially emphasized the
fact that the magnetic configuration exhibits a complex mag-
netic topology including lots of null points and separatrix sur-
faces. No twisted flux tubes have been found in the configura-
tion of AR 8210.

The vector magnetic field measured by IVM was recor-
ded on May 1, 1998 at 19:40 UT within a field-of-view of
280′′ square and with a resolution of 1′′. In order to reduce the
noise level on the transverse component, we have averaged the
Stokes parameters over 15 minutes (5 consecutive complete ob-
servations with a time cadence of 3 minutes). The noise level on
the vertical component is reduced to 30 G and on the transverse
components to 70 G. As seen in Fig. 2a, the distribution of the
vertical component on the photosphere contains a strong neg-
ative sunspot surrounded by multiple positive polarities. The
strongest positive polarity is located on the south-east side of
AR 8210 and the weakest and more diffuse positive polarity is
on the west side (also associated with a weak diffuse negative
polarity). In Fig. 2b, we plot the distribution of Jz derived from
the transverse magnetic field components from Eqn. (4). The α
values range from -0.05 to 0.05 Mm−1.

It is important to note that for each case, we have combined
IVM data and SOHO/MDI data in order to enlarge the field-
of-view and to have a weak magnetic field outside the active

Fig. 4. AR 8210 3D magnetic field configurations for the potential
field (left) and for the nlff field (right). Only a few field lines are
plotted characterising the main features of the configurations. There
is no evidence of much change of connectivity between both config-
urations.The background image represents the vertical magnetic field
with positive (resp. negative) polarities in white colour or solid con-
tours (resp. black colour or dashed contours).

region. Those composite images are then compatible with the
side boundary conditions described in Section 1.

3. Effects of current density on the geometry of
field lines

3.1. Potential vs nlff magnetic Fields

We proceed to a visual inspection of some particular field lines
for both the potential and nlff field reconstructions.

For AR 8151, the effects of high current density on the
different sets of field lines is strong as seen in Fig. 3: the in-
crease of twist and shear inside the configuration modifies the
geometry of the field lines. In particular, the increase of shear
modifies the angle between the polarity inversion line and the
field line at the apex as seen from the S-shaped field line. We
especially note that the connectivity of the field lines (location
of the footpoints on the photosphere) is different. From the side
view, we notice that in the nlff case the field lines are at a lower
height in the corona confined by the combination of twist and
shear and the surrounding potential field.

For AR 8210, the current density is not strong enough
to dramatically modify the magnetic configuration and then
the nlff field resembles closely the potential field as shown in
Fig. 4. From the side view, there is little apparent change in the
height of the selected field lines and the different flux bundles
have similar footpoints. This active region is characterized by
its complex topology evidenced by footpoints close to each
other in the negative polarity and connected to different pos-
itive polarities. No twisted flux bundles have been reconstruc-
ted in this magnetic configuration confirming that the observed
Hα filaments are low-lying in the chromosphere and the corona
and the spatial scale of their associated distribution of current
density is smaller than the spatial resolution used to compute
the 3D field.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Differences between the potential and nlff fields for AR 8151. Geometrical parameters: (a) the height, (b) the length and (c) the distance
between footpoints as a function of the α value at the footpoint (in units of Mm−1). (d) The aspect ratio of each loop is plotted for the nlff
(triangles) and for the potential (asterisks). The magnetic field of each loop is characterised by (f) the field strength at the apex and (e) the mean
field strength along the loop.

3.2. Quantitative Comparison

In order to give a quantitative description of the differences
between the potential and nlff configurations, we derive geo-
metrical and magnetic parameters for field lines having a field
strength at the footpoint above a given threshold (Bz,min): h
the height of the loop (orthogonal projection onto the photo-

sphere), d the distance between the two photospheric footpoints
of the loop, l the length of the loop, Bh the field strength at the
apex of the loop, and Bmean the average field strength along
the loop. In Figs. 5 and 6, we plot as a function of the photo-
spheric values of α: (a) the difference in the heights of loops
for the potential and nlff fields (hnl f f − hpot), (b) the difference
in loop length (lnl f f − lpot), (c) the difference in the footpoint
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Differences between the potential and nlff fields for AR 8210. Geometrical parameters: (a) the height, (b) the length and (c) the distance
between footpoints as a function of the α value at the footpoint (in units of Mm−1). (d) The aspect ratio of each loop is plotted for the nlff
(triangles) and for the potential (asterisks). The magnetic field of each loop is characterised by (f) the field strength at the apex and (e) the mean
field strength along the loop.

distance for each loop (dnl f f − dpot), (d) the aspect ratio, 2h/d,
for both potential (asterisks) and nlff (triangles) fields, (e) the
difference in magnetic field strength at the apex of each loop
(Bnl f f

h − Bpot
h ), and (f) the difference in the mean magnetic field

strength (in absolute value) along each loop (|Bnl f f
mean − Bpot

mean|).
For AR 8151, we have selected Bz,min = 100 G which lim-

its the number of studied field lines to 552. Note that for this

chosen threshold, 38% of the field lines are locally potential
(α = 0) and so the different parameters are identical for those
field lines. In this case with high values of current densities, we
calculate the difference between the potential and the nlff fields
in statistical terms as extracted from Fig. 5. For the geomet-
rical parameters, between 40% and 50% of the nlff field lines
are higher and longer than potential ones which contradicts our
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visual inspection described in Sect. 3.1. From Fig. 5a, the mean
of the distribution in height is 17.2 Mm with a standard devi-
ation of 43 Mm. From Fig. 5b, the mean of the distribution in
length is 68 Mm with a standard deviation of 123.4 Mm. From
Fig. 5c, the mean of the distribution in footpoint separation is
13.3 Mm with a standard deviation of 39 Mm. There is a signi-
ficant change in aspect ratio values from potential to nlff : 65%
(resp. 35%) of the nlff field lines have an aspect ratio less than
1 (resp. greater than 1) and 79% (resp. 21%) of the potential
field lines have an aspect ratio less than 1 (resp. greater than 1).
In terms of the magnetic field strength, we notice that the val-
ues at the apex are statistically higher for the nlff field (38% of
positive values and 24% of negative values in Fig. 5e) but not
significantly with a mean of 1.5 G and a standard deviation of
20.8 G. A similar comment can be made for the mean magnetic
field strength along a particular field line with a mean of 4.3 G
and a standard deviation of 40.2 G. We can conclude that for
AR 8151, the nlff field lines are statistically higher, longer and
have a stronger magnetic field strength than the potential field
lines. An other important point is that the connectivity (para-
meter d) has been significantly modified from one model to the
other.

For AR 8210, we choose Bz,min = 100 G and we will then
consider 919 field lines. In this set of field lines, 18% of them
are locally potential (with the same parameters). The charac-
teristic parameters are plotted in Fig. 6. 44% (resp. 38%) of
the field lines are higher (resp. lower) in the corona for the nlff
than the potential field with a distribution characterised by a
mean of 5.9 Mm and a standard deviation of 34.3 Mm. The
results are similar for the length of the loops (47% longer, 35%
shorter) and for the distance between the footpoints (45% with
an increasing distance and 37% with a decreasing distance).
Statistically, the mean values for plots in Fig. 6(a–c) are close
to zero and with a small standard deviation with respect to the
maximum value of the distribution. We conclude that the geo-
metry and connectivity of the magnetic field lines are similar
to those of the potential field lines even if they are carrying
current (spreading of α between -0.05 and 0.05 Mm−1). This is
confirmed by the measurement of the aspect ratio: 84% (resp.
85%) of the nlff (resp. potential) field lines have an aspect ra-
tio less than 1. The injection of current density inside the nlff
magnetic configuration modifies the magnetic strength: both at
the apex and on average along the loops, the magnetic field
strength is equally distributed around zero with a standard devi-
ation of 28 G at the apex and 43.7 G along the loop for extrema
of -100 G and of 100 G. These current carrying field lines can
then store magnetic energy.

By comparing quantitatively and statistically the distribu-
tions of different characteristic parameters for both active re-
gions, we can conclude that the effects of current density on
a magnetic configuration strongly depend on the nature of the
magnetic field. For the case of a decaying active region with
strong measured electric current density, the magnetic field
geometry and connectivity is dramatically modified from the
potential field model to the nlff model. For the case of the newly
emerged active region, the current density along the field lines
does not imply strong changes of the magnetic configuration.

(a)

(b)

Fig. 7. Energy density maps at y = 60 pixel for AR 8151: (a) potential
field, (b) nlff field (increasing density from black to white). The energy
density is in arbitrary units and a log scale is used to take into account
the rapid decrease of the magnetic field strength with height.

Fig. 8. Variation of the energy density for AR 8151 along the z-axis
for the potential field (lower curve) and the nlff field (upper curve)
obtained by averaging the magnetic field strength in the corresponding
xy-plane. The free magnetic energy is contained in the light gray area.
The plot on the right shows the percentage of free energy along the
z-axis (see text for details).

4. Comparison of magnetic energy and magnetic
helicity

4.1. Free Magnetic Energy Budget

One important issue is to know the budget of magnetic energy
that can be stored in a magnetic configuration. A part of this
energy budget will be released during an eruptive process. The
free magnetic energy budget is given by:

∆Em = Enl f f
m − Epot

m (5)
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where the magnetic energy Em is computed in the coronal
volume V as follows:

Em =

∫

V

B2

8π dV (6)

Table 1. Magnetic energy of the nlff field, free magnetic energy budget
and relative magnetic helicity for both studied active regions

Enl f f
m (1032 erg) ∆Em (1032 erg) ∆Hm (1042 Mx2)

AR 8151 0.64 0.26 0.47
AR 8210 10.6 0.24 −4.2

In addition to the derivation of the above global quantities,
we can compute the density of magnetic energy at a given pixel
and then determine the location of energy storage in the corona.
We study the variations of the energy density with height by
averaging the energy density on each xy-plane.

For AR 8151, we visualise in Fig. 7 the distribution of mag-
netic energy density (in arbitrary units) in the plane y = 60
for both the potential and nlff fields. We notice that for the nlff
field magnetic energy is stored in the middle part of the coronal
volume. The excess of magnetic energy in the nlff configuration
is located at the typical heights corresponding to the different
twisted flux tubes (Régnier et al. 2002; Régnier & Amari 2004).
In Fig. 8, we plot the variation of the magnetic energy density
averaged at a given height for both the potential and nlff fields.
The magnetic energy is mostly located near the photosphere
where the magnetic field strength is high but the free magnetic
energy (light gray area) is predominantly situated in the middle
of the corona in a range of 15 Mm to 70 Mm (as shown by the
percentage of free magnetic energy plotted on the right side of
Fig. 8). From Table 1, we notice that the free magnetic energy
budget is about 40% of the magnetic energy of the whole nlff
magnetic configuration and is estimated to 2.6 1031 erg. This
amount of free energy is sufficient to trigger a small energetic
flare. Nevertheless the main ingredients which can be respons-
ible for an eruptive event are (i) the existence of highly twisted
flux tubes, and (ii) a magnetic energy content close to the Aly-
Sturrock limit as discussed in Régnier & Amari (2004).

For AR 8210, the comparison of the deposit of magnetic
energy in the corona pictured in Fig. 9 does not show much
change from the potential field model to the nlff model. The
magnetic energy is mainly stored in the low corona close to
the photosphere. From Table 1, the free magnetic energy is es-
timated to 2.4 1031 erg corresponding to only 2.5% of the en-
ergy of the nlff configuration but still enough to trigger small
flares. As described in Régnier & Canfield (2006), a series of
C-class flares was recorded before and after the particular time
studied here. This is also seen in Fig. 10 where we plot the
evolution of energy density with height. We have used a logar-
ithmic scale along the energy density axis because both curves
are very close from each other. It is noticeable that the percent-
age of free energy along the z-axis shows a concentration of
energy in the 50 Mm above the photosphere.

(a)

(b)

Fig. 9. Energy density maps in the plane y = 60 for AR 8210: (a)
potential field, (b) nlff field (increasing density from black to white).
The energy density is in arbitrary units and a log scale is used to take
into account the rapid decrease of magnetic field strength with height.

We note that from one active region to the other, the amount
of energy in the magnetic configuration can be very different
(by a factor of a hundred) depending on the total magnetic flux
through the photosphere and on the size of the active region.
The percentage of energy stored can also be very different de-
pending on the history or development of the active region prior
to the snapshot studied.

4.2. Relative Magnetic Helicity

The relative magnetic helicity ∆Hm is a gauge invariant quant-
ity measuring the twist and shear of a magnetic configuration
in a coronal volume V given by (Berger & Field 1984; Finn &
Antonsen 1985):

∆Hm =

∫

V
(A − Are f ) · (B + Bre f ) dV (7)

where B is the nlff field (B = ∇ ∧ A) and Bre f a reference
magnetic field often chosen to be the potential field.

From Table 1, we find that the relative magnetic helicity
given by Eqn. (7) is of the order of 1042 Mx2. The values of
the helicity depends on the amount of free energy inside the
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Fig. 10. Variation of the energy density for AR 8210 along the z-axis
for the potential field (lower curve) and the nlff field (upper curve)
obtained by averaging the magnetic field strength in the corresponding
xy-plane. The free magnetic energy is contained in the light gray area.
The plot on the right shows the percentage of free energy along the z-
axis (see text for details). Note that the energy density axis is measured
on a logarithmic scale.

magnetic configuration as noticed by Kusano et al. (2002). We
note that the magnetic helicity for AR 8151 follows the chiral-
ity rules defined by Pevtsov et al. (1995) and Longcope et al.
(1998): negative helicity sign in the southern hemisphere. This
active region follows Joy’s law. AR 8210 does not follow either
Joy’s law or the chirality rules.

In a recent review by Démoulin (2006), it is pointed out
that for AR 8210 the negative relative magnetic helicity derived
from the nlff field is not compatible with the sign of helicity
derived from the observed Hα fibrils in the penumbra of the
clockwise rotating sunspot as well as with the positive helicity
flux derived by Moon et al. (2002) and Nindos et al. (2003).
A positive injection of magnetic helicity can be written as fol-
lows:
d ∆Hm

dt
> 0 (8)

giving for two different times t0 and t1(> t0):

∆Hm(t1) − ∆Hm(t0) > 0. (9)

Taking into account that ∆Hm can be either positive or negative,
we obtain the two following conditions:

i f ∆Hm > 0 ∆Hm(t1) > ∆Hm(t0) (10)

i f ∆Hm < 0 |∆Hm(t0)| > |∆Hm(t1)|. (11)

The condition given by Eqn. (11) agrees with the finding of
Régnier et al. (2005) for the relative helicity and of Moon et al.
(2002) and Nindos et al. (2003) for the positive injection of
helicity flux. Note that Eqn. (11) can also be seen as an an-
nihilation of negative helicity. This injection of flux is mainly
dominated by the clockwise rotation of the sunspot. Looking

at Hα fibrils in the chromosphere is not sufficient to determ-
ine the sign of the magnetic helicity of an active region which
extends high in the corona and which has a complex distribu-
tion of the magnetic field on the photosphere, but it certainly
provides a good proxy for the sign of flux injection assuming
that sunspot rotation is the main source of injected helicity (see
e.g. Démoulin et al. (2002) for a review on the mechanisms of
helicity injection due to transverse photospheric motions).

5. Conclusions

Our main goal has been to explicitly define the effects of cur-
rent density on the geometry, connectivity, and energetics of
coronal magnetic field configurations. Our first step described
in this article is the study of two active regions: a decaying
active region with strong current density and a newly emerged
active region.

For both examples, the photospheric distributions of cur-
rent density and of α do not show any particular patterns or any
evidence of organised distribution. Nevertheless for the decay-
ing active regions, the α values range from -1 to 1 Mm−1 in-
dicating that strong currents are present in the magnetic con-
figuration and are responsible for highly twisted and sheared
field lines. While for the newly emerged active region, the α

values range between -0.05 and 0.05 Mm−1 (4% less than for
AR 8151) indicating the existence of weak currents.

From the study of the geometry and the connectivity, we
can conclude that the changes due the current density strongly
depend on the nature of the active region: the stage of its evolu-
tion, the driving velocity field at the bottom boundary respons-
ible for generating currents, the distribution of the sources of
magnetic field. For the decaying active region with a simple
magnetic distribution, the strong currents generate a twisted
flux tube and therefore the departure from the potential field
configuration is important. While the weak currents in the
newly emerged active region do not dramatically modify the
connectivity of the magnetic field lines and the magnetic topo-
logy of the configuration.

The strong currents are also responsible for the storage of
magnetic energy in the corona (∼ 50 Mm) associated with twis-
ted and sheared flux bundles. The stored magnetic energy is
about 40% of the total energy. And for the newly emerged act-
ive region, the energy storage is localized close to the photo-
sphere where the magnetic field is stronger and the magnetic
field decays with height as fast as a potential field. The stored
magnetic energy represents only 2.5% of the total energy but
such a value is comparable to the magnetic energy of AR8151,
and is sufficient to trigger C- or X-class flares.
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Fig. 11. Evolution of the magnetic energy (solid line, unit of 1031 erg)
and magnetic helicity (dot-dashed line, unit of 1041 G2· cm4) as a func-
tion of the linear force-free parameter α (Mm−1). The dashed lines in-
dicate the α value and the magnetic energy value for the lff having the
same magnetic helicity as the nlff field.

Appendix A: Comparison of magnetic helicity val-
ues

In this article, we compared the nlff fields with the potential
fields but deliberately side-stepped a comparison with a linear
force-free field. Even if the computation of a linear force-free
field is easier and faster, we justify this decision as follows:

(i) observations of the transverse field on the photosphere re-
veal a highly non-uniform distribution of α;

(ii) the best choice of the α value is somehow arbitrary and is
still debated (see e.g., Leka & Skumanich 1999; Leka et al.
2005);

(iii) the linear force-free corresponds to a mathematically ill-
posed problem. For instance, Seehafer (1978) has demon-
strated that the magnetic energy in an infinite volume can-
not be bounded;

(iv) the magnetic helicity content derived from the lff field does
not measure the complexity of the field as observed in the
corona. In particular in a single active region both signs of
helicity (e.g., right and left handed flux tubes) can be found.

Therefore the lff approximation does not contain import-
ant physical ingredients that are possible for a nlff field, such
as twisted bundles or highly sheared arcades. Direct compar-
isons between measurements in the low corona and different
models have highlighted the additional physics contained in the
nlff approximation (e.g. Wiegelmann et al. 2005). Nevertheless,
the lff field having a magnetic helicity ∆H l f f

m does represent a
minimum energy state of the nlff field having the same mag-
netic helicity ∆Hnl f f

m = ∆Hl f f
m (Molodensky 1969; Aly 1989).

Therefore, it is interesting to compare the magnetic energy and
magnetic helicity contents for lff field with various α values and
the nlff field. We perform this experiment for AR 8151 because
of the existence of flux tubes with opposite handedness.

We compute the lff field using the Grad-Rubin numerical
scheme with the same boundary conditions as for the nlff field
and for a range of α values from −0.05 to 0.1. We then derive
the magnetic energy given by Eqn. (6) and the relative magnetic
helicity given by Eqn. (7). The results are presented in Fig. 11.
We notice that the free magnetic energy in a lff configuration
(solid line) evolves as α2 and that the magnetic helicity (dot–
dashed line) evolves as α3. From Fig. 11, we take the value
of the nlff magnetic helicity (dashed line at ∆Hm = 4.7 1041

G2· cm4), we deduce the associated value of α for the lff field
(dashed line at α = 6.7 10−2 Mm−1) and then we find that the
corresponding magnetic energy budget is of ∆E l f f

m = 2.55 1031

erg. The latter value gives a magnetic energy for this particular
lff field of 6.55 1031 erg comparable to the magnetic energy of
the nlff field (see Table 1). The lff magnetic configuration with
this magnetic energy corresponds to a minimum energy state
of the nlff field. In terms of geometry, the lff magnetic field
configuration corresponding to this minimum energy state has
a different connectivity but is closer to the nlff field than the
potential field configuration, and we were not able to recover
any twisted flux tubes in the 3D configuration.

It is important to note that the mean value of α on the photo-
sphere is negative giving a negative magnetic helicity opposite
to our results derived from the nlff . Therefore when performing
a lff field reconstruction, the choice of α is crucial and can lead
to wrong conclusions even in the sign of the magnetic helicity.
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